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Mathematical Structure of Two-Parameter
Deformed Multimode Quantum Group SLy(3)

Zhaoxian Yu' and Yehou Liu?
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The commutative relations of the generators of the two-parameter deformed
multimode quantum group SL,(3) are given, and irreducible gs-tensor operators
of rank 1/2 of the multi-mode quantum group SL,(2) are constructed.

Quantum groups (Drinfeld, 1985) have been discussed by many authors
in the mathematics and physics literature. The general relations of quantum
group SL,(3) were first given by Jimbo (1985). In the present paper we
study the mathematical structure of the two-parameter deformed multimode
quantum group SLy(3)

We first introduce three independent two-parameter deformed k-mode
bosonic operators (Yu and Liu, 1998):
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where the deformation brackets are defined as
[Xlge = ' 71X = 5" 7" — ¢ Wq — g7, Mgt =57 (4
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It is easy to check the following results:

A4 = 5T qAT A= (s A — )T A A= (T ()

[Nf, 4i] = AL, (NG, 4] = — A (6)
BiBi — sq BBy = (sq~ )™ (7)
[Ni, B{] = B{, [N, B = —Bx (8)
CCE = s 'qCECk = (sq) ™, GG = (sq)7'CilCe = (s~ '™ (9)
[Ni, CF1 = CE,  [Ni, Cd = —Cx (10)
where
Nt = min(n{, ns, ..., nk (11)
NZ = min(nf, n5, ..., nd) (12)
Ni = min(ni, ns, ..., np) (13)

Similar to the quantum group SL,(3) (Jimbo, 1985), we choose the
Chevalley base:

h = N{ — N},  h,= N{ — Nj (14)
e1 = A{Br e—1 = Bif A, (15)
e» = BiC e, = Ci Bi (16)

which obey the relations

[hi, e+i] = T2e+; (i=1,2) (17)

[hi, e+)] = Fexy (i#j, i,j=1,2) (18)

ere—; — ste—je; = [hilys (19)
ere—y — 5 2e—ner = [y (20

and Serre’s relations
eler + serel = [2]4s Leresen (2D
2t ie—r + eret) = [2]gs te—1e—2e—1 (22)

In this group, two additional operators are defined as
e3 = s A/Jng, e—3 = CF As™ (23)

which satisfy the commutative relations
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[hi, ex3] = kexs (i =1,2) (24)
eze—3 — sfe—zes = [ + ha)ys (25)
and Serre’s relations
sPeties + eser, = [2]4s te—1e36—1 (26)
efe—3 + sPe_zet = (2], lere—se; (27)

We now redefine the generators of the two-parameter deformed k-mode
quantum group SL,(3) as follows:

Jo=zh, Je=ex, Q= —(h+2h) (28)
and
Ty = — e, T-1p = e, Voin = e, Vin =es (29)
Obviously, we have
Ve=(=DPTIT)T = (30)
It is easy to prove the following results:
[Q. Jo] =[Q, J+] =0 (3D
Jo, J«] = £Js, s Jd- — sJ_Jo = s 20 [2) (32)
[Jo. T)=1tT,, o, Vi=1tV, (t=%5) (33)
Q. T1=3T, [QVI=-3V, (= %y (34)
and
STL Tip + Tipd 2 = [2]J-TinJ - (35)
JAT -1 + ST-ipJ 5 = (2] T -1+ (36)

In particular, as s = 1, the above results reduce to the case of the two-
parameter deformed k-mode quantum group SU,(3). On the other hand, we
see that the operators 7;and V; can be as 1/2-rank tensors of the two-parameter
deformed k-mode quantum group SL,«(2).
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